
Ceylon Journal of Science 52 (3) 2023: 339-350

Agent-based modelling of electric vehicle behaviour in a university environment
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Highlights

•	 The study investigates how utilizing electric vehicles (EVs) affect university communities 

•	 The feasibility of academic institutions to build solar-powered EV charging stations to use less carbon-based 
electricity. 

•	 The agent-based model (ABM) is proposed with three charging scenarios for modelling and analysing the EV 
charging infrastructure.

•	 The study highlights the optimum charging methods to maximize the PV advantage while minimizing the direct 
peak demand from the grid during the daytime.
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Abstract: As the number of electric vehicles (EVs) increases, the 
strategic planning of charging infrastructure becomes a crucial 
matter. Vehicle parking time takes the longest at home and work. 
The residential is responsible for 75% of EV charging time, 
while the workplace is for 14%. The combination of EVs with 
intermittent energy sources has attracted considerable attention 
in recent years. It has several advantages, including significantly 
greening the entire EV usage cycle and attaining financial viability 
by lowering the direct peak demand on the grid. This study has 
described the agent-based infrastructure of the EV charging 
station model on university premises. It lets us obtain the best 
possible energy supply from solar PV, external batteries, and grid 
agents. Three charging scenarios (uncontrolled, vehicle-to-grid 
(V2G), and grid-to-vehicle (G2V)) are constructed and simulated 
with varying percentages of EV resemblance. Slow charging 
is included in the G2V scenario to improve the PV benefits in 
the EV charging model. The simulation result shows that slow 
charging in the workplace infrastructure increases the PV benefits 
of EV charging while reducing grid dependency.

Keywords: Electric Vehicle (EV); Agent-Based Model (ABM); 
State of Charge (SOC); Solar Photo Voltaic (solar PV)

INTRODUCTION

In addition to eco-friendly transportation, EVs also serve as 
energy storage, a solution to rising fuel prices, and a means 
of lowering air pollution. The transportation industry 
continues to be one of the largest producers of greenhouse 
gas (GHG) emissions. It accounts for approximately 
23%, with car passenger transport accounting for 11% 
(Vijayashankar, 2017). EVs have the potential to reduce 
GHG emissions significantly. Charging massive EV fleets 
poses a problem to the electrical grid since both the total and 
instantaneous peak demand increase considerably. It causes 
severe loading at transformer stations. Understanding 
user behaviour and how it affects charging infrastructure 
could help the most efficient deployment of charging 
stations (Gunther & Fallahnejad, 2021). EV charging using 
renewable energy (RE) not only realizes its full potential as 
a green mode of transportation but also aids the large-scale 
integration of RE into the existing energy infrastructure 
(van der Kam et al., 2019).

The thesis report of Pallawala  (2019) intended  to examine 
the sectors and stakeholders involved in promoting EVs 
in Sri Lanka, as well as the opportunities and challenges 
that might arise Global trends in the EV industry, rising 
fossil fuel prices, availability of financing instruments, 

overall cheap cost of transportation, comparably minimal 
maintenance needs, and passionate early adopters are the 
primary potential for promoting EVs in Sri Lanka. In 2021, 
the President of Sri Lanka presented the country’s sustainable 
energy development goals at the United Nations High-Level 
Dialogue on Energy (United Nations, 2021). According to 
the President, Sri Lanka has set an ambitious goal to obtain 
70% of the country’s energy needs from renewable sources 
by 2030. Sri Lanka aims to move away from fossil fuels, 
promote decarbonization, and achieve carbon neutrality by 
2050. 

The import of cars that run on fossil fuels will also be 
discouraged, and EV adoption will be promoted. These 
goals demonstrate the future of EVs in Sri Lanka. EV 
charging behaviour is influenced by many factors, such 
as charging time, parking duration, range anxiety, driver 
experience, etc. This complex system could be modelled 
using a relatively new modelling technique named agent 
based model (ABM). ABM is a technique for simulating the 
activities and interactions of several independent entities, 
or agents, across time. It allows systematic investigations 
of changes in social systems over extended periods, which 
would be expensive and impossible to test in real life. The 
ABM-charging infrastructure allows the EV charging 
demand to be determined, which considers several EV 
features, such as the number of EVs, the SOC of each EV 
at the time of arrival, and charging modes (uncontrolled, 
V2G, and G2V).

This research intends to create a PV-based EV charging 
platform on university premises to efficiently charge EVs, 
enhance integrated renewable sources - PV while charging, 
and show the impact of using energy storage devices on the 
charging station’s performance.

RELATED WORKS

The multi-agent system (MAS) based simulation technology 
has been proposed to assess the impacts of EV charging 
on Singapore’s energy infrastructure in (Ho et al., 2014). 
The developed EV charging algorithm allocated charging 
energy to individual vehicles based on their state of charge 
(Jiang et al., 2019). An intelligent and decentralized MAS 
was offered for controlling and managing EV charging in 
low-voltage (LV) distribution networks (Mocci et al., 
2014). It has been enhanced with active demand (AD) in 
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(Ruggeri et al., 2014).

A probabilistic ABM enabled the calculation of EV 
charging demand while considering various social and 
economic aspects (Afzaal et al., 2020). A charging station 
infrastructure for a large metropolis has been proposed 
in (Gunther & Fallahnejad, 2021). Various influencing 
parameters, including the number of users, charging time, charging 
frequency, charging station type, and billing models, were altered 
to achieve the optimal possible development and operation of 
public charging infrastructure. The ABM for EV charging 
infrastructure has been proposed in (Vijayashankar, 2017). 
That could be used on a neighbourhood scale until 2035. 
A new bottom-up physical method has been presented in 
(Plagowski et al., 2021), which combined the simulations 
of ABM traffic and grid energy flow. A Multi-Agent model 
of long-distance transportation in Sweden was proposed 
by (Marquez-Fernandez et al., 2019), allowing for the 
simulation of various scenarios and a complete analysis 
of  the interaction between these vehicles and the charging 
infrastructure.

The ABM simulation determined whether an electric 
van fleet with various charging options could equal the 
performance of a diesel fleet (Utomo et al., 2019). The 
impacts of influencing variables such as driver behaviour, 
charging station location, and electricity pricing on EV 
charging demand were evaluated on EV charging demand 
using an ABM-simulation model in (Chaudhari, 2019). A 
multilevel agent-based model was proposed for buying, 
charging, and driving EVs (the ABCD model) (Hoekstra & 
Hogeveen, 2017).

The different charging infrastructure rollout strategies to 
facilitate large-scale adoption of EVs have been presented 
in (Wolbertus & van den Hoed, 2019). An ABM information 
system for recognizing trends in residential plug-in electric 
vehicle (PEV) ownership and driving behaviours were 
presented in (Sweda & Klabjan, 2014). A unique ABM 
simulation framework for urban electro-mobility was 
proposed in (Adenaw & Lienkamp, 2021), which could be 
used to analyse charging station usage and user behaviour.

Over the last few years, the combination of EVs with 
intermittent renewable energy sources has garnered 
considerable attention. An ABM was utilized to determine 
how well alternative charging patterns correspond to RE 
generation from photovoltaics and wind in (van der Kam et 
al., 2019). The impacts of driver behaviour, charging station 
location, and energy cost on EV charging demand were 
examined in (Chaudhari, 2019). Private and commercial 
EV charging demands place additional stress on the 
distribution grid. Photovoltaic (PV) systems might assist in 
easing this stress. Depending on the energy pricing band 
allocation, the algorithm switches between the deterministic 
and rule-based modes of operation.

Most EV load modelling systems use charge scheduling 
algorithms to forecast current load demand. When 
modelling the EV charging load, the literature lacks 
realistic considerations from the perspective of university 
and workplace EV charging stations. To minimize the 
effects on the distribution grid, studies on power system 
optimization maximize EV penetration by utilizing charge 

scheduling algorithms. Previous EV charging-related 
research papers have not included a realistic estimate of 
EV energy use, including longitudinal vehicle dynamics 
and the power train system. The EV load models and 
energy system models must be co-simulated to consider 
these considerations when modelling EV loads. The 
literature lacks co-simulation studies connecting isolated 
transportation and energy system studies.

The remaining portion of this paper is organized as follows. 
The work of agent modelling is discussed in the next section. 
L a t e r ,  t h e  validation of the agent model is also 
presented, followed by the experimental and simulation 
findings. 

TOPOLOGY AND MODELLING OF THE STUDIED 
SYSTEM

The studied system is based on ABM. It comprises 
multiple agents, such as solar PV, EVs, utility, weather, 
charging control, external battery storage, and charge pole 
agents, as illustrated in Figure 1.

PV agent energy is primarily used to charge EVs. A battery 
agent is an additional energy source that can be used to 
energize EVs or to absorb excess energy generated by the 
PV agent. The Utility grid agent is used as a backup source. 
The control agent is utilized to manage charging scenarios 
based on the energy management strategy, which ensures 
the system’s energy balance.

Figure 1: EV charging infrastructure.

Agent Modelling

This research builds a platform to simulate the behaviour 
of EVs and the corresponding infrastructure. ABM is 
used to model different components in an EV charging 
infrastructure and their interactions. MESA agent-based 
simulation platform in Python models the agents and their 
behaviours.

Solar Agent Modelling

The solar PV agent accesses temperature and irradiance data 
from the weather agent. Test data has been acquired from 
the PV portal of the Faculty of Engineering, University 



341S.K. Jaslin et al.

of Peradeniya, Sri Lanka. IBC Solar - PolySol 250 CS 40 
kWp and 15 kWp solar panels are available on the faculty 
premises. The predicted energy output of the PV (PPV) is 
calculated from equation (1), (Chandrasiri, 2017).

	 (1)

where, IPV: Sun Irradiance value at the current time 
(Wm−2),τPV: Transmittance value of PV cell, ηref : PV 
electrical efficiency, A : Area of PV module, αP: 
Temperature coefficient of power (K−1), T : Temperature at 
the current time (K), and TSTC : standard temperature (25oC).

EV Agent Modelling

A similar behavioural pattern of actual EVs has been 
followed to develop EV agents. The EV agent comprises 
a vehicle power train system, transmission and battery 
model, regenerative braking system, and driver cycle. The 
speed trace from the database is applied to the vehicle drive 
cycle unit. Nissan leaf 2013 EV is simulated in this model.

Auxiliary devices are also included in the EV model. 
It increases the accuracy of the energy consumption 
prediction. The backwards-facing model is utilized to 
access the EV agent’s total energy consumption (Miri et 
al., 2021); (Wawrzyniec & Maciej, 2018). Figure 2 shows 
the backward model of EV.

The novelty of this study is summarized from the above 
works of literature. It includes:

•	 Calculation of auxiliary device energy usage (which is 
assumed to be 300W as per literature studies).

•	 Using efficiency maps, estimate the efficiency of an 
electric motor and inverter.

Nissan leaf 2013 has a 100% electrified powertrain system 
called e-POWER. It has significant characteristics such as 
rapid reaction, smooth acceleration and deceleration, and 
quietness. The traction electric motor and inverter have an 
optimal efficiency of approximately 96% (Yoshimoto & 
Hanyu, 2021). For this ABM, the optimal efficiency value 
(96%) is used.

The power consumption of motion accounted for a part of 
power demand, as calculated by the following equations 
(2) and (3),

	 (2)

where, 

where, PBattery: Total power consumed by EV battery, PTraction 
Traction power of EV, PBraking: Braking power of EV, Pauxilary: 
Auxiliary power consumed by EV, RTotal: Total resistance 
force, Vvehicle: Average speed of EV, ηpowertrain: Power train 
efficiency and α: Braking percentage.

			  (3)

where, 

 and

where, RTotal: Total opposite force at the wheels, RA: Aero 
Dynamic Drag Force, RR: Rolling Resistance Force, Rθ: 
Gradient Resistance Force, RI: Inertia Resistance Force, 
ρ: Air density, AF: Frontal Area of the Vehicle, Cd:Drag 
Coefficient, Vwind: Wind speed, CRR: Coefficient for rolling 
resistance, g: Acceleration Gravity, θ: Inclination Angle, 
Mvehicle: Mass of the vehicle, : Force required for linear 
acceleration of the vehicle, : Force required to increase 
of the rotational speed of the rotating components, δ: 
Rotary Inertia Coefficient, and a: Acceleration of EV.

External Battery Agent Modelling

An external Battery agent is additional storage to supply 
the EVs or to absorb excess energy produced by the solar 
agent. It primarily provides energy if the energy of the solar 
agent is insufficient. EV agent battery instances are used to 
develop this simulation model.

The battery model’s two major energy storage systems are 
the lithium-ion battery pack and lead-acid battery. Lithium-
ion battery pack propels the vehicle and the low voltage 
(12V) lead-acid battery that provides energy to the auxiliary 
devices. The dynamic charging/discharging characteristics 
of the lithium-ion battery pack are simulated to estimate its 

Figure 2:  Backward architecture model for EV agent.
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operating voltage and SoC with a high level of precision 
(Miri et al., 2021), (Lamba, 2019), and (Mantravadi, 2011). 

The battery current is calculated in equation (4),

 		  (4)

where, VBattery: Battery Voltage in (V), VOC: Open circuit 
voltage of battery in (V), IBattery: Battery current in (A), and 
RBattery: Total battery resistance.

The VOC varies with the battery SOC. The proposed 
model eliminates the temperature dependency of VOC - 
SoC relationship. The VOC: of the whole battery system is 
defined as: 

 				    (5)

where, Voc-cell: open circuit voltage for a single cell Ncell_s: 
No of cells in series.

Every battery cell is assumed to be in the same state of health. 
As a result, the model is identical to a single cell. The SoC, 
battery temperature, and whether the battery is charging or 
discharging conditions determine the total resistance of the 
battery, R_Battery. Which can be calculated using single-
cell resistance, R_cell and the number of cells in series and 
parallel. 

 	 (6)

where, No of cells in parallel.

  P_Battery: Power requirements determine the voltage at 
the battery level. The VBattery is calculated from equation 
(7) since the power required at the battery level is known. 
Which is based on Thevenin’s equivalent model (Figure 3).

Figure 3: Battery electrical circuit model (Thevenin’s 
model).

By applying equation (7) into (3), battery current is 
calculated. Which is in equation (8).

 			   (7)

	 (8)

An equivalent electrical circuit-based model of Li-ion 
batteries is in Figure 3. At each agent step, the battery SoC 
updates by using the Coulomb counting method, as shown 
in equation (9). This approach cannot be used in a real-
world application (due to measurement noise).

 		  (9)

where, SOC%: battery state of charge in (%), SOC0: initial 
battery state of charge in (%) and CBattery: battery cell 
capacity in (Ah).

Other Agent modelling: Utility agent Charging control 
agent, External Battery agent, Weather agent and charge 
pole agent.

The EV charging agent model includes other agents such 
as the utility agent, charging control agent, external battery 
agent, weather agent, and charge pole agent.

•	 Utility Agent: In this agent model, the utility agent has 
no energy limit. It serves as a backup supply, allowing 
PV sources to sell excess energy and EVs to obtain 
energy, depending on the energy management strategy.

•	 Weather agent: It has a temperature and irradiance 
values database in faculty surroundings. From the 
faculty inverter portal, the weather agent accessed the 
data. The solar agent generates energy by using its data.

•	 Charge pole agent: Three charging modes are slow, 
average, and fast charging. The details are listed in 
Table 1.

•	 External Battery agent: Battery Storage agent is 
additional storage to supply the EVs or to absorb 
excess energy produced by the solar agent. It primarily 
provides energy if the energy of the solar agent is 
insufficient. EV agent battery instances are used to 
develop this ABM.

Figure 4: Charging Scenarios for EVs.

Table 1: Charging Power of Nissan Leaf 2013 (Nissan, 2014).

Type Interface Power
Slow charging (EVSE Cable) Type 1 (SAE J1772, IEC 61851-1, J PLUG, YAZAKI) 2.3kW
Average Charging (Portable Cable) Type 1 (SAE J1772, IEC 61851-1, J-PLUG, YAZAKI) 6.6kW
Fast charging Type 4 (IEC 62196-3 AA, CHAdeMO) 50kW
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Figure 5: The flow chart of energy management strategy.

Figure 6: Solar agent output for one day - (Simulation and Homer software).

•	 Charging Control agent: Charging control, energy 
management, external battery, and EV battery’s SOC 
control are the primary functions.

Charging control has been designed with uncontrolled 
charging, vehicle-to-grid (V2G), and grid-to-vehicle (G2V) 
situations, as summarized in Figure 4. This can be chosen 
from our simulation model interface.

The EV is charged using an energy management scenario, 
which allows the user to choose between solar, external 
batteries, or grid agents as an energy source. The solar 
agent is primarily used to charge EVs. An external battery 
agent is a storage device that energizes EVs or absorbs the 
surplus energy generated by the solar agent. The utility 
agent provides a backup supply and allows the solar agent 
to sell excess energy. This scenario updated the SOC of 
the external battery and the EV. Figure 5 shows the energy 
management statement.

Agent Validation

Solar Agent Validation

The solar agent model has been validated using the Homer 
Pro 3.14. The results show the least amount of variation. 
Figure 6 shows the simulation output, and Table 2 concludes 
the results.

Table 2: Total PV array output from the simulation model 
and Homer software.

PV 
output(kWh) 
(one day)

Simulation 
Model

Homer 
Model

Error 
(100%)

108.60 108.47 -0.123

EV Agent Validation

The New European Driving Cycle (NEDC), Environmental 
Protection Agency (EPA), and Worldwide Harmonized 
Light Vehicle Test Procedure (WLTP) tests have been used 
to validate the EV agent. The two scenarios have been 
used to validate the model. Scenario-I is without auxiliary 
devices. In Scenario II, a few auxiliary devices are turned 
on. Nissan leaf 2018 model with the test mass as Kerb 
weight (1573kg), driver load (100kg), and extra payload 
for the simulation (Peter Mock et al., 2014).

NEDC combines a fourfold repetition, which includes the 
urban driving cycle (UDC) and the EUDC (extra-urban 
driving cycle) under different driving conditions. It has the 
lowest accuracy among the three tests. It has been outdated 
since 2017 with the introduction of WLTP. Table 3 lists the 
NEDC test result.

According to the website for vehicle purchasing advice in 
the United States, “The WLTP is now more accurate, with 
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EV range estimates that are approximately 10% greater 
than what Europeans experience. Compared to the NEDC’s 
tendency to overestimate by 25% to 30%. “(Jessica, 2020). 
The results have validated the above statement that the 
energy consumption from the simulation model is lower 
than the standard value. WLTP combines low, medium, 
high, and extra-high driving cycles. Each part contains a 
variety of driving phases, stops, acceleration, and braking 
phases. For both scenarios, WLTP testing has shown a 
reasonable degree of accuracy (Jessica, 2020). Table 3 
shows the testing results. Vehicles run through a series of 
driving routines with the city (FTP), highway, high speed 
(US06), and air conditioning (SC03) in EPA tests. 

The Federal Register of the Environmental Protection 
Agency has specified vehicle fuel economy labelling 
for EPA testing. They examined 615 latest car models to 
determine the percentage change in label values relative to 
the present labels. According to the new city and highway 
fuel economy labels, 90% of the cars would have new label 
values 8 to 15% and 5 to 15% lower than their current label 
values accordingly (Rachel Lee et al., 2020). The EPA 
testing simulation of the model has yielded findings within 
a permissible range, as shown in Table 4.

Battery Agent Validation

To evaluate the battery model of an EV, a concurrently 
operating Li-Ion battery from a Nissan leaf 2013 vehicle 
power profile has been used. The design and validation of 
a hardware-in-loop lithium-ion battery pack were gathered 
from Field for EPA testing (US06, HW, and USSD/FTP) 
(Lee et al., 2014). They used a two-time constant equivalent 
circuit battery cell model and lumped capacitance for a 

Table 3: The NEDC and WLTP testing results of the ABM simulation model.

Energy
Consumption 
(kWh/100km) Error (%)

Total
Distance

(km)

Standard Energy 
consumption
(kWh/100km)

The NEDC test results of ABM simulation model.
Without Auxiliary 13.63 -6 11.022 14.5
With Auxiliary 14.52 0.138 11.022 14.5

The WLTP test results of ABM simulation model.
Without Auxiliary 17.75 -8.46 23.26 19.4
With Auxiliary 18.4 -5.15 23.26 19.4

Table 4: The EPA testing results of the ABM simulation model.

City_FC HW_FC Combined_FC
Standard Energy Consumption (kWh/100km) 17.2 21.2 19.1
Standard Fuel Economy ( km/ Wh) 0.006424 0.005212 0.005879

Without Auxiliary
Fuel Economy
(km/ Wh) 0.0056755 0.005286 0.005500

Error (%) -15.348 -0.778 -9.542

With Auxiliary
Fuel Economy
(km/ Wh) 0.00543755 0.005172 0.005318

Error (%) -11.652 1.422 -6.439

thermal model.

The first order Thevenin’s equivalent circuit has provided 
more accurate dynamic charge/discharge characteristics. 
The AB-simulation model included a single-time constant 
equivalent circuit battery cell model (Eltoumi Fouad, 
2020). As shown in Table 5, the simulated battery pack 
of the Nissan Leaf emulation has shown better agreement 
with the actual battery pack data under EPA testing. The 
absence of a battery thermal model in the agent model for 
regulating coolant flow rate and temperature changed the 
results slightly.

SIMULATION AND RESULTS

The proposed model is based on the MESA agent-based 
simulation. Each step takes up to 5 minutes. The simulation 
started with two EVs during parking time on the faculty 
premises. Then, the percentage of available cars was 
predicted as EVs, which was added to the database. Energy 
distribution pattern from the grid, solar, and batteries has 
been observed.

Case-1: Two EV cars

The patterns have been observed using the two accessible 
EVs under three charging scenarios: uncontrolled, V2G, and 
G2V. When the car arrives at the car park for uncontrolled 
charging, it immediately begins to charge the car until the 
SOC reaches 100% or until disconnection. It charges by 
average charging mode at a rate of 6.6kW as mentioned in 
Table 1. The observations are presented in Figure 7.

When the car’s SOC falls below 80% during the V2G 
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Speed pattern of two EVs
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scenario, it begins charging until the SOC reaches 100% or 
disconnection. Otherwise, it acts as storage and supplies the 
energy to an external battery storage agent until it reaches 
80% of SOC. During the charging, it intends to charge the 
car in average mode (6.6 kW) when the SOC of the EV 
is greater than 50%. It will be in fast charging mode (30 
kW) if the SOC is less than 50%. The charging mode power 
values have mentioned in Table 1.

Since the available cars are near the faculty, only a 
significant fraction have less than 80% SOC when they 
arrive. At the same time, the simulation model focuses on 
charging at the workplace, ensuring that each day begins 
with 100% SOC. Figure 7 shows the results.

When an EV’s SOC is less than 50% in the G2V scenario, it 
is under fast charging mode. Unless it is charged at average 
mode (6.6kW). First, the solar PV agent be- gins charging. 
The external storage agent charges the EV if the PV energy 
is inadequate to charge it fully. After that, the excess PV is 
fed into the grid. Which is presented in Figure 8.

(a) SOC variation of two EVs and external battery

(b) EV car battery energy consumption pattern.

(c) Grid and external battery energy consumption.

Figure 8: Two EVs simulation results - G2V.

Case-2: The Future of EV- Predicted Model

Various percentages of EV predictions in the university car 
park have been simulated under uncontrolled, V2G, and 
G2V charging scenarios. A complementary energy supply 
requires external battery storage and grid connections. 
PV can either charge EVs immediately or offer stationary 
storage during the day. The utility grid agent is with 
unlimited resources in this scenario. The external battery 
storage capacity and power limit are 40 kWh and 50 kW, 
respectively.

PV energy is inadequate to charge all the EVs’ SOC to 
100%. At this point, the stationary storage charge the 
EV until it runs with minimum SOC, and then energy is 
supplied by the utility grid. The findings show that PV 
energy generation does not entirely benefit EV charging and 
that reliance on the public grid increases as the percentage 
of EVs increases. It is depicted in Figure 9 for the G2V 
scenario as an example.
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Figure 9: Grid and external battery energy distribution for G2V (Average Charging).

Increased PV penetration for EV charging is a crucial 
challenge for PV-aided EV charging stations. This raises 
the question regarding the circumstances. What is the 
optimal size of the system? What additional features could 
be included in the existing charging infrastructure? Slow 
charging in the G2V mode with 2.3kW boosts the direct 
PV benefits. In the slow charging mode, the PV, grid, and 
stationary storage share the energy to charge the EVs.

Slow charging

Almost all cars in the database have working time span of 
more than 2-4 hours. Slow charging provides a higher PV 
benefit than the average charging G2V. A comparison of 
the two scenarios with varying EV predictions has been 
shown in Figure 10.

(a) 50% EV Prediction.

(b) 75% EV Prediction.

(c) 100% EV Prediction.

As EVs grow in the faculty, grid energy consumption 
also increases. At that point, solar energy is insufficient to 
compensate for EVs’ demand fully. However, it provides 
significant PV benefits when charged slowly in a G2V 
scenario. It substantially doubles the PV influence and 
reduces grid reliance by a factor of two. The energy 
distribution percentage profile is depicted in Figure 11.

•	 50% of EV resemblance: The solar benefits from 
28.72% to 52.39% while eliminating grid dependency.

•	 75% of EV resemblance: The solar energy contributes 
35.34% from 17.34% during slow charging.

•	 100% of EV resemblance: The solar energy contribution 
is increased from 14.07% to 29.82%.
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(a) Slow and average charging for 100% of EV prediction.

(b) Slow and average charging for 75% of EV prediction.

(c) Slow and average charging for 50% of EV prediction.

Figure 10: Slow and average charging for EV resemblance.

Table 5: The EPA testing results for EV battery simulation model.

Drive Cycle RMS Current (A) Test/Simulation (SIM) Error (%)

US06
71.12 Test

1.38
72.1 SIM

HW
36.18 Test

0.06
36.2 SIM

USSD/FTP
23.85 Test

1.68
24.25 SIM
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Figure 11: EV energy distribution percentage profile.

DISCUSSION

With uncontrolled charging, it begins the charging process 
for the cars as soon as it enters the faculty. It continues until 
they achieve 100% SOC or are disconnected. It resulted in 
a substantial increase in energy demand.

V2G permits obtaining energy from energy resources 
and charging the vehicle when implementing controlled 
charging. When the SOC exceeds 50%, fast charging begins 
to preserve the battery’s lifetime from the full depth of the 
discharge (Venkat, 2020). On the other hand, V2G charging 
is more effective than the two charging scenarios. When the 
SOC is above 80%, EVs can return significant energy to 
the grid. As a result, V2G has assisted in reducing the grid’s 
need for additional energy generation and the demand for 
energy supply resources.

In the G2V scenario, the average charging mode is to 
charge the EVs. A slow charging condition is introduced 
to the system to improve the PV benefits. It has almost 
increased the system’s PV benefit by a factor of 2.

The physical limitations and proper sizing must be 
analysed and adjusted to design a viable PV-based EV 
charging station. PV energy generation is also affected by 
weather, solar irradiation, and temperature. When there is 
a surplus of PV production, a proper storage system and 
utility connection should be in place to acquire it.

CONCLUSION

This research focused on modelling a solar-aided EV 
charging station at a university. It can be chosen between 
three charging modes (uncontrolled, V2G, and G2V). This 
SOC-based charging management monitors and ensures 
EV recharge. In the V2G situation, the PV benefits increase 
when the average mode is switched to slow charging. The 
two main concerns highlighted in the case studies are V2G 
charging and G2V-slow charging. It lowers the barrier to 
EV charging during the unanticipated energy demand and 
boosts the usefulness of PV-used charging. Future research 
will enforce a time-of-use (ToU) system with appropriate 
price charges for EV users. In addition, it needs to define the 
barriers and develop solutions for PV-based EV charging 
stations at the university premises.
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